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Abstract

This paper re-examines existing wave run-up data for regular, irregular and solitary waves on smooth, impermeable plane

slopes. A simple physical argument is used to derive a new wave run-up equation in terms of a dimensionless wave parameter

representing the maximum, depth-integrated momentum flux in a wave as it reaches the toe of the structure slope. This

parameter is a physically relevant descriptor of wave forcing having units of force. The goal of the study was to provide an

estimation technique that was as good as existing formulas for breaking wave run-up and better at estimating nonbreaking wave

run-up. For irregular waves breaking on the slope, a single formula for the 2% run-up elevation proved sufficient for all slopes

in the range 2/3VtanaV1/30. A slightly different formula is given for nonbreaking wave run-up. In addition, two new equations

for breaking and nonbreaking solitary maximum wave run-up on smooth, impermeable plane slopes are presented in terms of

the wave momentum flux parameter for solitary waves. This illustrates the utility of the wave momentum flux parameter for

nonperiodic waves.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Maximum wave run-up is an important design

criterion for several types of coastal structures such as

revetments, breakwaters and dikes. Also, beach

processes such as beach/dune erosion and storm
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flooding are related, in part, to wave run-up. Being

able to estimate maximum wave run-up accurately can

lead to more economical design. For example, the

upper limit of expected wave run-up determines the

crest elevation of a coastal structure designed to

prevent wave overtopping. Overestimating maximum

wave run-up could add significant cost to a rubble-

mound breakwater. Below is a sampling of published

papers related to wave run-up on coastal structures to

give an idea of how predictive capability has
(2004) 1085–1104
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progressed since 1950. This is by no means a

comprehensive overview of the run-up literature,

and papers describing the more recent advances aimed

at modeling wave run-up numerically have been

excluded.

1.1. Regular wave run-up

Among the earlier investigations of wave run-up

are the contributions of Granthem (1953), Saville

(1955, 1956, 1958) and Savage (1958). These

researchers measured wave run-up caused by regular

wave trains impinging on various types of smooth and

rough sloping structures, composite slope structures

and other variations (stepped, recurved, etc.). Run-up

results were plotted as functions of various wave

parameters and structure slope, but no design formulas

were given. Wave run-up estimation guidance was

given in the earliest version of the Corps of Engineers’

Shore Protection Manual (Beach Erosion Board,

1961) as a series of design nomograms, and this

technique for regular wave run-up was propagated for

over 20 years in essentially the same form (Shore

Protection Manual, 1984), although extensions were

made based on a reanalysis of regular wave run-up by

Stoa (1978).

Early practical formulas for regular wave run-up

on smooth and rough plane slopes and composite

slopes were presented by Hunt (1959). Curiously,

Hunt was a Major in the Corps of Engineers

stationed in Detroit, MI, but his run-up formulas

were never included in any version of the Corps’

Shore Protection Manual. Hunt recognized that

different formulas would be needed to differentiate

run-up caused by nonbreaking waves that surge up

steeper slopes from run-up caused by waves that

break on milder slopes as plunging or spilling

breakers.

For surging waves on plane, impermeable slopes,

Hunt (1959) recommended simply

R

H
c3 ð1Þ

where R is the maximum vertical run-up from SWL

and H is wave height (assumed to be the deepwater

wave height, i.e., HcHo). Hunt’s analysis for the case

where waves break on the slope resulted in a
dimensionally nonhomogeneous equation for maxi-

mum run-up R given as

R

H
¼ 2:3

tanaffiffiffiffiffiffi
H

T2

r ð2Þ

where T is wave period and a is structure slope angle.

Recognizing that the coefficient 2.3 has units of ft1/2/s,

Eq. (2) can be expressed as a dimensionally homoge-

neous equation with the introduction of the gravity

constant in imperial units, i.e.,

R

H
¼ 1:0

tanaffiffiffiffiffiffiffiffiffiffiffi
H=Lo

p or
R

H
¼ 1:0no ð3Þ

where the deepwater wavelength is given by Lo=

( g/2p)T2, and

no ¼
tanaffiffiffiffiffiffiffiffiffiffiffi
H=Lo

p ð4Þ

is defined as the deepwater Iribarren number

(Iribarren and Nogales, 1949), also known as the

bsurf similarity parameterQ (Battjes, 1974a). Often

the parameter no is calculated using a finite-depth

local wave height in the vicinity of the slope toe

rather than a true deepwater Ho. For example, in

laboratory experiments, it is common to specify H

as the wave height measured over the flat-bottom

portion of the wave facility before significant wave

transformation occurs due to shoaling. In some

cases, HcHo, but this is not always assured. For

the discussion in this paper, we will assume that no

is based on the local wave height at or near the toe

of the slope rather than Ho.

1.2. Irregular wave run-up

The capability to predict maximum wave run-up on

a variety of structure slopes and surface types

advanced structure design, but the above regular wave

methods were not altogether realistic given the

irregular character of natural sea states. The impor-

tance of irregular wave run-up on structures was

acknowledged in the 1977 and 1984 editions of the

SPM (Shore Protection Manual, 1977, 1984). Based

on earlier publications suggesting irregular wave run-
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up for wind generated waves is Rayleigh distributed,

the SPM proposed a Rayleigh cumulative distribution

for estimating run-up given by

RP

Rs

¼
�
� lnP

2

�1=2

ð5Þ

where P is the exceedence probability, RP is the run-

up elevation associated with P and Rs is the

significant wave run-up. In other words, the run-up

level exceeded by 2% of the run-ups would be

estimated with P=0.02 and denoted as R0.02. The

SPM recommended Rs be estimated as the regular

wave run-up value determined from the existing

nomogram procedures.

For many years, the Netherlands used a simple

formula for estimating irregular wave run-up given by

Wassing (1957) as

Ru2% ¼ 8H1=3 tana ð6Þ

where Ru2% is the vertical elevation from SWL

exceeded by 2% of the run-ups and H1/3 is the

significant wave height (average of the highest 1/3

waves) at the toe of the structure slope. This formula

was valid for milder slopes with tanaV1/3.
Battjes (1974b) demonstrated the applicability of

the Hunt formula (Eq. (3)) for irregular waves

breaking as plungers on the slope for the 2% run-up

level with the formulation

Ru2%

H1=3
¼ Cmnom where nom ¼ tanaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H1=3=Lom
p ð7Þ

and Lom is the deepwater wavelength associated with

the mean irregular wave period, Tm. Battjes reported

the coefficient Cm varied from 1.49 for fully

developed seas to 1.87 for seas in the initial stages

of development. Prototype measurements by Grüne

(1982) expanded the range of Cm to between 1.33 and

2.86. Van der Meer and Stam (1992) converted Eq. (7)

to a slightly different form

Ru2%

H1=3
¼ CpnopV where nopV ¼ tanaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H1=3=Lop
p ð8Þ

and Lop is the deepwater wavelength associated with

the peak spectral wave period, Tp. The range given by

Battjes for the coefficient Cm was converted to

1.3VCpV1.7 by assuming the ratio Tp/Tm is approx-

imately 1.1–1.2. Van der Meer and Stam also noted
the formula should be restricted to values of nopVb2,
and they demonstrated good correspondence to Eq.

(8) for large-scale laboratory run-up experiments with

plunging breakers on slopes between tana=1/3–1/8.
Battjes (1974b) also included reduction factors to

account for various rough slopes (rock, concrete

armor, etc.) and his table was included in the SPM.

Ahrens (1981) conducted laboratory measurements

of irregular wave run-up on smooth, impermeable

plane slopes with slope angles ranging between

tana=1/1 and tana=1/4. For the mildest 1-on-4 slope

where most of the waves broke on the slope as

plunging breakers, Ahrens proposed the run-up

elevation exceeded by 2% of the run-ups be estimated

using the Hunt formula (Eq. (3)), i.e.,

Ru2%

Hmo

¼ 1:6nop ð9Þ

where

nop ¼
tanaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hmo=Lop

p ð10Þ

and Hmo is the energy-based zeroth-moment wave

height. The coefficient 1.6 is near the high limit given

by Battjes (1974b). Similar formulas were given for

significant run-up and mean run-up. For steeper

slopes, Ahrens gave an expanded equation in the form

RX

Hmo

¼ C1 þ C2

Hmo

gT2
p

 !
þ C3

Hmo

gT2
p

 !2

ð11Þ

where RX is a place-holder for run-up exceedence

levels (2%, significant and mean), and regression

coefficients C1, C2 and C3 are tabulated for different

slopes and exceedence levels.

In Ahrens (1981), significant wave height was

denoted as Hs, but this value was calculated from the

measured wave spectra according to the definition for

Hmo (Ahrens, personal communication). This raises an

interesting point with respect to design formula that

use the notation Hs to represent irregular waves.

Unless explicitly stated, the user cannot be certain

whether Hs means the time-series wave parameter H1/3

or the frequency-domain parameter Hmo. For narrow-

band spectra where the wave heights can be assumed

Rayleigh distributed, H1/3cHmo, and it matters not

which parameter is used for Hs in the design formula.

However, as waves approach incipient breaking, H1/3
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becomes larger than Hmo and the design formulas will

give different answers. Thus, it is important to

determine which parameter is meant by the notation

Hs.

Ahrens et al. (1993) examined a large set of run-up

data for smooth, impermeable slopes ranging between

tana=1/1–1/4, and they proposed design formulas for

significant and 2% run-up elevations. These formulas

were then compared to other published data sets, and

modifications to the formulas were made where

necessary. The final recommended equation for

breaking waves (plunging or spilling on the slope)

was given as

Ru2%

Hmo

¼
2:26nop

1þ 0:324nop
� 	 for nopV2:5

� 	
ð12Þ

with nop based on Hmo and Tp. The appearance of nop

in both the numerator and denominator has no

physical meaning, it is simply an empirical fit to the

data. For nonbreaking waves (surging/collapsing),

Ahrens et al. recommended

Ru2%

Rs

¼ 1:6F0:24 for nopz4:0
� 	

ð13Þ

with the significant run-up estimated by

Rs

Hmo

¼ exp 2:48Xp þ 0:446 cosað Þ3:5 þ 0:19P
h i

for nopz4:0Þ ð14Þ
�

where

Xp ¼
hcota
Lp

� �
� hcota

Lp

� �2

andP¼ Hmo=Lp�
tanh

�
2ph
Lp

�3
ð15Þ

and h is the water depth at the toe of the structure, and

Lp is the local wavelength associated with the spectral

peak period Tp. In the transitional range 2.5bnopb4.0,
a weighted average technique was proposed. A key

point made by Ahrens et al. (1993) was the lack of

wave run-up data representing severe wave conditions

(0.33VHmo/hV0.60) relative to water depth at the

structure toe which may be the design condition for
shallow water structures. Thus, there could be

uncertainty regarding wave run-up formula accuracy

under these conditions.

In the recently available Coastal Engineering

Manual (CEM) (Burcharth and Hughes, 2002), two

sets of design guidance are presented for irregular

wave run-up on smooth, impermeable slopes. For

steeper slopes in the range tana=1/1–1/4, the data of

Ahrens (1981) was represented by

Ru2%

Hmo

¼ 1:6nop for nopV2:5
� 	

ð16Þ

and

Ru2%

Hmo

¼ 4:5� 0:2nop for 2:5bnopb9
� 	

ð17Þ

Once again, the irregular wave deepwater Iribarren

number is based on Tp and Hmo at, or near, the toe of

the slope. For milder structure slopes in the range

tana=1/3–1/8, the CEM recommends the guidance of

De Waal and Van der Meer (1992), given by

Ru2%

H1=3
¼ 1:5nopV for 0:5bnopV V2:0

� 	
ð18Þ

and

Ru2%

H1=3
¼ 3:0nopV for 2:0bnopV b4

� 	
ð19Þ

with nopV calculated using Tp and H1/3. De Waal and

Van der Meer stated water depth at the toe of the

structure was at least three times H1/3 for all data used

to establish Eqs. (18) and (19) so they assumed waves

were Rayleigh distributed. Therefore, it should be

reasonable to apply Eqs. (18) and (19) using Hmo

instead of H1/3. De Waal and Van der Meer (1992)

also developed guidance for run-up on composite

slopes (berm), and they gave reduction factors for

slope roughness, shallow water and incident wave

angle.

All of the wave run-up studies discussed above

pertain to run-up on coastal structures with slopes as

mild as tana=1/8. Not as many laboratory experiments

have been conducted for more gentle slopes similar to

those found on natural beaches.

Mase (1989) presented results from irregular wave

run-up experiments on mild impermeable plane

slopes of tana=1/5, 1/10, 1/20 and 1/30. He
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expressed the 2%-run-up elevation as the following

function of nop

Ru2%

Hmo

¼ 1:86 nop
� 	0:71

for nopV3:0
� 	

ð20Þ

Mase also presented empirical estimation formulas

of the same form for Rmax, R1/10, R1/3 and R̄ with

different coefficients and slightly different exponents.

It was noted in the Coastal Engineering Manual

(Smith, 2002) that Eq. (20) overpredicts the best-fit

line to Holman’s (1986) field measurements of beach

run-up by a factor of two, but the equation did provide

an approximate upper envelope to the measurements.

Effects of beach permeability, nonuniform beach

slope, wave breaking over sand bars and other factors

related to Holman’s data were not quantified, and

these could explain the differences between laboratory

and field data.

Douglass (1992) analyzed Holman’s (1986) field

measurements of beach run-up and argued that beach

slope was not an important parameter for predicting

wave run-up on natural beaches. Plots of relative

maximum run-up versus Iribarren number showed no

better correlation than plots of maximum relative run-

up versus wave steepness. Furthermore, maximum rel-

ative run-up plotted as a function of beach slope exhi-

bited little correlation. Given the problem of defining

beach slope and the slope variability, Douglass sug-

gested that beach slope be eliminated from the run-up

equation when applied to beaches, and he proposed the

following equation based on Holman’s data

Rmax

Hmo

¼ 0:12ffiffiffiffiffiffiffiffiffi
Hmo

Lop

s ð21Þ

1.3. Importance of Iribarren number

Practically, all present day wave run-up guidance is

given in terms of the deepwater Iribarren number

using local wave height, and there can be no question

about its significance when waves break as plunging

or spilling waves on the slope. However, run-up data

for nonbreaking breaking waves that surge up steeper

slopes does not correlate as well to the Iribarren

number, and instead run-up appears in this case to be

directly related to wave height. Rearranging Hunt’s
equation for breaking wave run-up, we see run-up is

directly proportional to wave period, slope and the

square root of wave height, i.e.,

R~H1=2 T tana ð22Þ

Thus, variation in incident wave height is less

important and water depth at the toe of the structure

slope is not included. A possible explanation for the

success of the Hunt formulation for breaking waves

may lie in the assumption that broken waves become

selfsimilar during shoaling. Consider two waves

having significantly different wave heights but the

same value of wave steepness, H/Lo. Depth-limited

breaking will occur at different water depths on the

slope, and the magnitude of the dimensional flow

kinematic parameters at breaking will be different

between the two waves. However, the good correla-

tion between run-up and deepwater Iribarren number

suggests that depth of initial wave breaking and

breaking wave kinematics are not critical for breaking

wave run-up because ultimately the two different

waves having the same value of H/Lo become similar

in the surf zone as observed by Battjes (1974a).

For nonbreaking wave run-up, we should expect

wave kinematics to be more important, particularly for

shallow water nonlinear waves approaching limiting

steepness. Wave steepness contained in the deepwater

Iribarren number (H/Lo) does not adequately charac-

terize wave nonlinearity in shallow water, so we might

expect poorer results when using no to estimate

nonbreaking wave run-up. It is anticipated that water

depth at the structure toe will become an important

parameter for nonbreaking wave run-up such as

shown by Ahrens et al. (1993) in Eqs. (14) and (15).

1.4. Present study

This paper re-examines existing wave run-up data

for regular, irregular and solitary waves on smooth,

impermeable plane slopes. A crude model is used to

derive a new wave run-up equation in terms of a

dimensionless wave parameter (Hughes, 2004) repre-

senting the maximum, depth-integrated momentum

flux in a wave as it reaches the toe of the structure

slope. The goal of the study was to provide an

estimation technique that was as good as existing

formulas for breaking wave run-up and better at
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estimating nonbreaking wave run-up. For irregular

waves breaking on the slope, a single formula proved

sufficient for all slopes in the range 2/3VtanaV1/30. A
slightly different formula is given for nonbreaking

wave run-up. In addition, two new equations for

breaking and nonbreaking solitary wave run-up are

presented.
2. Wave momentum flux parameter

Hughes (2004) introduced a wave parameter

representing the maximum depth-integrated wave

momentum flux occurring in a wave of permanent

form, i.e., the maximum over the wave of the integral

MF x; tð Þ ¼
Z g xð Þ

�h

pd þ pu2
� 	

dz ð23Þ

where MF(x,t)—depth-integrated wave momentum

flux at x and t; pd—instantaneous wave dynamic

pressure at a specified position; u—instantaneous

horizontal water velocity at the same specified

position; q—water density; h—water depth; x—

horizontal direction perpendicular to wave crests;

z—vertical direction, positive upward with z=0 at

still water level; g(x)—sea surface elevation at

location x; t—time.

Maximum depth-integrated wave momentum flux

has units of force per unit wave crest, and Hughes

speculated this wave parameter may prove useful in

empirical correlations relating waves to nearshore

coastal processes occurring on beaches and coastal

structures. He also noted that integration of Eq. (23)

over a uniform periodic wave results in radiation

stress, Sxx, as introduced by Longuet-Higgins and

Stewart (1964). However, values of MF vary over a

wave from large positive values at the wave crest to

large negative values in the trough, whereas the value

of Sxx is relatively small in comparison to the

maximum. When considering force loading on coastal

structures, perhaps better correlations can be made

using a parameter representative of the maximum

force in the wave instead of one corresponding to the

integration over the entire wavelength.

Estimates of (MF)max can be made for any wave for

which sea surface elevation and wave kinematics are

known either through theory or measurement. Hughes
(2004) derived formulas for estimating the maximum

depth-integrated wave momentum flux for periodic

(regular) waves and solitary waves.

2.1. Estimates for periodic waves

An estimate of wave momentum flux in periodic

waves was given by Hughes for first-order wave

theory in nondimensional form as�
MF

qgh2

�
max

¼ 1

2

�
H

h

�
tanhkh

kh

þ 1

8

�
H

h

�2�
1þ 2kh

sinh2kh


ð24Þ

The dimensionless parameter to the left of the equal

sign represents the nondimensional maximum depth-

integrated wave momentum flux, and it is referred to

as the bwave momentum flux parameterQ.
Eq. (24) expresses nondimensional maximum

wave momentum flux as a function of relative wave

height (H/h) and relative depth (kh). However,

integration over the water depth stopped at the still

water level, and Eq. (24) does not include that part of

the wave above the still water level where a

significant portion of the wave momentum flux is

found.

An improved estimate of (MF)max was obtained

using extended-linear theory in which expressions for

linear wave kinematics are assumed to be valid in the

crest region so the integration could be continued up

to the free surface at the crest. This resulted in a

slightly different expression given by

�
MF

qgh2

�
max

¼ 1

2

�
H

h

�
sinh k hþ H=2ð Þ½ �

khcosh khð Þ

þ 1

8

�
H

h

�2�
sinh 2k hþ H=2ð Þþ2k hþ H=2ð Þ½ �

sinh2kh


ð25Þ

However, the wave form is still sinusoidal rather

than having peaked crests and shallow troughs typical

of nonlinear shoaled waves and, consequently, the

extended-linear theory under-predicts momentum flux
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under the crest when waves become nonlinear. For

both linear and extended-linear theory, the relative

contribution of the horizontal velocity term (qu2) to
the total wave momentum flux varies between about

5% for low amplitude, long period waves to nearly

30% for waves approaching limiting steepness.

To better represent the maximum depth-integrated

wave momentum flux in nonlinear waves, Hughes

(2004) used Fourier approximation wave theory for

regular steady waves over a horizontal bottom. He

determined wave kinematics and calculated values of

the dimensionless wave momentum flux parameter for

selected combinations of relative wave height (H/h)

and relative water depth (h/gT2). Results were plotted

as a family of curves representing constant values of

H/h as shown on Fig. 1.

The dashed line on Fig. 1 gives the steepness-

limited wave breaking criterion tabulated by Williams

(1985) and expressed by Sobey (1998) as the rational

approximation

x2Hlimit

g
¼ co tanh

�
a1r þ a2r

2 þ a3r
3

1þ b1r þ b2r2

�
ð26Þ

where r=x2h/g, a1=0.7879, a2=2.0064, a3=�0.0962,

b1=3.2924, b2=�0.2645 and co=1.0575. Sobey noted
the above expression has a maximum error of 0.0014

over the range of Williams’ table. Williams’ (1985)

tabulation of limit waves is more accurate than the

traditional limit wave steepness given by

Hlimit

L
¼ 0:412tanh khð Þ ð27Þ

which overestimates limiting steepness for long

waves and underestimates limiting steepness for short

waves.

An empirical equation for estimating the wave

momentum flux parameter for finite amplitude

steady waves was established using the calculated

curves of constant H/h shown in Fig. 1. A nonlinear

best-fit of a two parameter power curve was per-

formed for each calculated H/h curve, and the re-

sulting coefficients and exponents for each fitted

power curve were also approximated as power

curves. The resulting, purely empirical, equation

representing the curves of constant H/h shown on

Fig. 1 is given as

�
MF

qgh2

�
max

¼ A0

�
h

gT2

��A1

ð28Þ
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where

A0 ¼ 0:6392

�
H

h

�2:0256

ð29Þ

A1 ¼ 0:1804

�
H

h

��0:391

ð30Þ

Even though the empirical coefficients and exponents

in Eqs. (29) and (30) are expressed to four decimal

places, corresponding accuracy is not implied.

Rounding to two decimal places should be reasonably

adequate for practical application of these empirical

equations.

The empirical equation represented by Eq. (28),

along with Eqs. (29) and (30), provides an easy

method for estimating maximum wave momentum

flux for finite amplitude, steady, regular waves. This

formulation gives more accurate estimates of the true

maximum depth-integrated wave momentum flux

than linear and extended linear theory because it

better represents the momentum flux in the wave

crest, which is expected to be critical for most

applications to coastal structures.

For irregular wave trains, Hughes recommended

that the wave momentum flux parameter be repre-

sented by substituting frequency-domain irregular

wave parameters Hmo (zeroth-moment wave height)

and Tp (peak spectral period) directly into the

empirical Eqs. (28)–(30). While this might not be

the best set of irregular wave parameters to use, these

frequency-domain parameters are commonly reported

for laboratory and field measurements, and numerical

irregular wave hindcast and forecast models output

frequency-domain parameters.

2.2. Estimates for solitary waves

Hughes (2004) also derived an expression for the

nondimensional wave momentum flux parameter

using first-order solitary wave theory given as�
MF

qgh2

�
max

¼ 1

2

��
H

h

�2

þ 2

�
H

h

�

þ N 2

2M

�
H

h
þ 1

��
tan

�
M

2

�
H

h
þ 1

�

þ 1

3
tan3

�
M

2

�
H

h
þ 1

��
ð31Þ
with the coefficients M and N approximated by the

empirically determined functions

M ¼ 0:98

�
tanh

�
2:24

�
H

h

��0:44

ð32Þ

N ¼ 0:69tanh

�
2:38

�
H

h

�
ð33Þ

Note that maximum depth-integrated wave momen-

tum flux for solitary waves is a function of only

relative wave height, H/h. The first bracketed term in

Eq. (31) arises from the dynamic pressure, and the

second term represents the contribution of horizontal

velocity to the maximum wave momentum flux.

The solitary wave estimates of the wave momen-

tum flux parameter represent the upper limit of the

nonlinear (Fourier) wave case when h/(gT2) ap-

proaches zero (see Fig. 1). At a value of H/h=0.1,

the velocity term contributes only about 7% of the

calculated momentum flux, whereas as at H/h=0.8 the

percentage increases to around 38% of the total.
3. Wave run-up as a function of wave momentum

flux parameter

In the following sections the maximum, depth-

integrated wave momentum flux parameter is corre-

lated to existing available data of normally incident,

breaking and nonbreaking wave run-up on smooth,

impermeable plane slopes. Included are data for

regular waves, irregular waves and solitary waves.

3.1. Wave run-up deviation

Archetti and Brocchini (2002) showed a strong

correlation between the time series of wave run-up on

a beach and the time series of depth-integrated mass

flux within the swash zone. They also noted that the

local depth-integrated momentum flux was balanced

mainly by the weight of water in the swash zone,

which was approximated as a triangular wedge. Their

observation suggests that maximum wave run-up on

an impermeable slope might be directly proportional

to the maximum depth-integrated wave momentum

flux contained in the wave before it reaches the toe of
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the slope. In this section, a simple derivation is

performed based on this assumption.

Fig. 2 depicts a simplification of wave run-up

geometry at the point of maximum wave run-up. The

force of the wave has bpushedQ the water up the

impermeable slope. At the instant of maximum run-

up, the fluid within the hatched area on Fig. 2 has

almost no motion. (Li and Raichlen, 2002 noted this

was nearly the case for solitary wave run-up.)

Following the lead of Archetti and Brocchini (2002),

a simple physical argument is that the weight of the

fluid contained in the hatched wedge area ABC

(W(ABC)) is proportional to the maximum depth-

integrated wave momentum flux of the wave before

it reached the toe of the structure slope, i.e.,

KP MFð Þmax ¼ KMWðABCÞ ð34Þ

where KM is an unknown constant of proportionality

and KP is a reduction factor to account for slope

porosity (KP=1 for impermeable slopes).

The weight of water per unit width contained in

triangle ABC shown on Fig. 2 is given by

WðABCÞ ¼
qg
2

R2

tana

�
tana
tanh

� 1


ð35Þ

where R is maximum vertical run-up elevation from

SWL, a is structure slope angle, and h is an unknown

angle between still water level and run-up water

surface (which is assumed to be a straight line).

Substituting Eq. (35) into Eq. (34), rearranging and

dividing both sides by h2 yields a new run-up
Fig. 2. Maximum wave run-up on a smooth impermeable plane

slope.
equation based on the dimensionless maximum wave

momentum flux parameter, i.e.,

R

h
¼ð 2KPtana

KM

�
tana
tanh

� 1

Þ1=2�
MF

qgh2

1=2
ð36Þ

or more simply

R

h
¼ CF að Þ

�
MF

qgh2

1=2
ð37Þ

where C is an unknown constant and F(a) is a

function of slope angle to be determined empirically.

For convenience, the bmaxQ subscript has been

dropped from the wave momentum flux parameter.

In the new run-up equation relative run-up (R/h) is

directly proportional to the square root of the wave

momentum flux parameter. Representing the run-up

sea surface slope as a straight line is an approximation,

but, for waves on gentle slopes were wave breaking has

occurred, this might be a reasonable assumption as

shown by Li (2000). On steeper slopes where waves

behave more like surging breakers, the sea surface

elevation will have more of a concave shape, also

illustrated by Li. Another simplification in this deriva-

tion is the absence of slope friction, and this was shown

by Archetti and Brocchini (2002) to be important for

swash zone run-up processes on mild slopes where the

wave travels over a much longer distance.

3.2. Regular wave run-up

The proposed run-up relationship given by Eq. (37)

was empirically fit to existing regular wave run-up

laboratory test results published many years ago by

Granthem (1953) and Saville (1955). In Granthem’s

impermeable-slope tests, waves propagated over a flat

bottom before reaching a linear slope that was varied

between 158 and vertical. Wave heights were some-

what mild with maximum relative wave height of

H/hc0.35. A total of 52 run-up values for slopes

ranging over cota=1.00, 1.43, 1.73, 2.14, 2.75 and

3.73 are used in this reanalysis.

Most of the waves in the experiments reported by

Saville (1955) propagated over a mild sloping bottom

before reaching the impermeable structure slope. Run-

up values were reported for slopes with cota=2.0, 3.0,
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4.0, 6.0 and 10.0 for a total of 100 observations. For

purposes of this paper, wave height at the structure toe

was estimated by linear shoaling of the measured

wave height recorded at the offshore measurement

location. Generally, waves were significantly larger

than in Granthem’s tests and only those waves with H/

hb1.0 at the toe after shoaling were used for the

present analysis.

The wave momentum flux parameter was estimated

for all 152 observations using the formula given by Eq.

(28), even though application to waves with H/hz0.8

is not strictly appropriate. A best-fit of Eq. (37) to the

run-up data set yielded a reasonably simple equation,

R

h
¼ 3:84tana

�
MF

qgh2

�1=2

ð38Þ

where (3.84 tana) represents the empirical function

CF(a) in Eq. (37). The results are shown in Fig. 3 with

the straight line representing Eq. (38). Granthem’s

data are solid markers and Saville’s data are hollow

markers. Most of the data follow the trend given by

the straight line with the exception of Granthem’s

results for a 1:1 slope, which have much lower run-up

values than estimated. Waves on this steep slope were

probably surging breakers or nonbreaking waves,

which do not conform to the straight-line sea surface
Fig. 3. Regular wave relative
assumed in the derivation of Eq. (37). The root-mean-

squared error between measured and predicted R/h

was 0.19, excluding Granthem’s 1:1 slope data.

For comparison, the same data have been plotted

on Fig. 4 using Hunt’s Eqs. (1) and (3). (Note that the

ordinate axis is run-up nondimensionalized by wave

height rather than water depth.) The Iribarren number

characterizes run-up very well for mild slopes that

produce low no values implying plunging or spilling

wave breaking on the slope. As slopes get steeper and

no exceeds 2.0, scatter becomes greater. Granthem’s

1:1 slope data are problematic in this plot as well.

3.3. Irregular wave run-up

Two published irregular wave laboratory data sets

were used to test the simple run-up relationship given

by Eq. (37) for irregular wave run-up. Both data sets

represent normally incident wave run-up on smooth,

impermeable plane slopes. Fig. 5 shows irregular

breaking and nonbreaking wave run-up data for 275

values of 2% run-up elevation measured by Ahrens

(1981) versus Iribarren number for steeper slopes

ranging between 1/4VtanaV1/1. The solid lines on

Fig. 5 are the recommended prediction equations

(Eqs. (16) and (17)) given in the Coastal Engineering

Manual. Data corresponding to milder slopes are
run-up versus Eq. (38).



Fig. 4. Nondimensional run-up versus Iribarren number for regular waves.
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clustered reasonably well for values of Iribarren

number below about 3.0. At values of nopN3.0

(representing steeper slopes and/or longer nonbreak-

ing waves) scatter increases significantly. Ahrens et al.

(1993) discussed reasons for the scatter and proposed

modified equations (Eqs. (12)–(15)) to reduce the

scatter for nonbreaking wave conditions.
Fig. 5. Ahrens’ (1981) original 2% r
Mase (1989) listed 120 values of 2%-run-up

elevation for milder slopes ranging between 1/30

VtanaV1/5. Fig. 6 plots nondimensional 2% run-up

Ru2%/Hmo versus Iribarren number nop. The solid line

is Mase’s best fit to the data previously given by Eq.

(20). A very good fit is seen for all but a few points for

the steepest slope at nopN2.5.
un-up data plotted versus nop.



Fig. 6. Mase’s (1989) data plotted versus Iribarren number.
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Application of maximum depth-integrated wave

momentum flux parameter to irregular waves requires

substitution of representative irregular wave parame-

ters Hmo and Tp for the regular wave height H and

period T, respectively, in Eqs. (28)–(30). Original data

provided by Ahrens included his measurements of

Hmo and Tp. Mase (1989) did not directly tabulate Tp
Fig. 7. Ahrens’ (1981) and Mase’s (1989) data plo
so it was necessary to extract Tp from given values of

nop using Hmo and tana. (Mase’s listed values of Hmo/

Lop appeared to have been rounded off and would

have produced a less reliable estimate of Tp).

Ahrens’ (1981) and Mase’s (1989) measurements

for Ru2% were normalized by water depth h at the

toe of the plane slope and plotted versus the
tted versus wave momentum flux parameter.
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calculated wave momentum flux parameter as shown

on Fig. 7. Ahrens’ data exhibited two distinct trends

that seemed to be delineated by a value of local

spectral steepness corresponding to Hmo/Lp=0.0225

regardless of structure slope over the range of tested

slopes. This steepness value appears to represent

transition of breaker type from nonbreaking/surging/

collapsing waves for Hmo/Lpb0.0225 to plunging/

spilling waves when Hmo/LpN0.0225. Physically, the

data indicate that nonbreaking/surging/collapsing

waves need more wave momentum flux than

plunging/spilling waves to achieve the same 2%

run-up level on the same slope and water depth. At

slopes of tana=1/4 and milder, which includes all of

Mase’s data, there was no differentiation based on

wave steepness. This implies that most of the

irregular waves were breaking as plunging or spilling

waves on the milder slopes.

The irregular wave run-up data from Ahrens were

separated into two groups according to the steepness

criterion Hmo/Lp=0.0225. Mase’s data were all

assumed to represent breaking waves. The data were

then further divided into groups according to slope

so that a best-fit expression for the slope function

CF(a) in Eq. (37) could be determined. The best-fit

points for each slope, and the resulting slope functions
Fig. 8. Empirical slope functions for breaking
for all nonbreaking and breaking waves, are shown on

Fig. 8. The corresponding empirical run-up equations

are given as.

Nonbreaking/surging/collapsing waves (Hmo/

Lpb0.0225):

Ru2%

h
¼ 1:75 1� e� 1:3cota½ �

� �� MF

qgh2

1=2
for 1=4VtanaV1=1 ð39Þ

Plunging/spilling waves (Hmo/LpN0.0225):

Ru2%

h
¼ 4:4 tanað Þ0:7

�
MF

qgh2

1=2
for 1=5VtanaV2=3 ð40Þ

Plunging/spilling waves (any value of Hmo/Lp):

Ru2%

h
¼ 4:4 tanað Þ0:7

�
MF

qgh2

1=2
for 1=30VtanaV1=5 ð41Þ

Data for slope cota=1.01 and Hmo/LpN0.0225

did not follow the trend found for the other slopes,
and nonbreaking irregular wave run-up.



Fig. 10. Comparison of Ahrens’ (1981) data to predictions using

Eqs. (16) and (17).
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and thus, were excluded from the empirical

formulation as indicated by the range of applic-

ability on Eq. (40). This data set is evident on Fig. 8.

One possible explanation is that these shorter waves

on the steep 1:1 slope produced a run-up wedge with a

concave sea surface profile that was not well

approximated by the straight-line water surface

hypothesized in Fig. 2. Thus, the derived run-up Eq.

(37) is not appropriate.

Fig. 9 compares predictions based on Eqs. (39)–

(41) to Ahrens’ and Mase’s observed 2% run-up

values. Mase’s data are the hollow circles clustered

toward the lower left corner of the plot. With the

exception of data for slope cota=1.01 and Hmo/

LpN0.0225 (shown by the X-symbol), the prediction

is reasonable. For comparison, Fig. 10 plots Ahrens’

(1981) measurements of Ru2%/Hmo versus estimates

using the prediction equations for steeper slopes given

in the CEM (Eqs. (16) and (17)). The new irregular

wave run-up equations exhibit less scatter for the

Ahrens’ data set then the prediction equations

recommended in the CEM.

A single equation, given by either Eq. (40) or

(41), was found to work reasonably well for

breaking waves over the entire range of slopes from
Fig. 9. Comparison of Ahrens’ (1981) and Mase’s (1989) data to

predictions using Eqs. (39)–(41).
quite mild (tana=1/30) to fairly steep (tana=2/3).
Previously, separate equations based on the Iribarren

number were needed to cover this range of slopes for

breaking waves. Also note that the slope function,

F(a), in Eq. (40) or (41), i.e., (tana)0.7, has the tangent
of the slope angle raised to essentially the same power

as given by Mase (1989) in Eq. (20). As seen on Fig.

8, the 0.7 exponent of tana lessens the influence of tan

a on run-up as slope decreases. This agrees with the

observation of Douglass (1992) that slope angle

plays a less important role for wave run-up on mild

beaches.

3.4. Solitary wave run-up

Run-up of solitary waves on impermeable plane

slopes has been well studied, producing both

theoretical/empirical formulas for maximum run-

up and numerical models of the entire run-up

sequence (e.g., Synolakis, 1986; Li and Raichlen,

2001; Li and Raichlen, 2003). Carrier et al.

(2003) crafted an analytical formulation for tsu-

mani run-up, and they noted the location and

direction of maximum wave momentum flux for

the cases of initial positive and negative wave

forms.



Fig. 12. Measured versus predicted nonbreaking solitary wave run-

up—Eq. (44).

S.A. Hughes / Coastal Engineering 51 (2004) 1085–1104 1099
For a given value of the solitary wave parameter H/

h, maximum wave run-up increases for breaking

waves as the run-up slope increases. However, when

the slope becomes so steep that the waves no longer

break, further slope steepening results in decreasing

values of run-up. The transition relative wave height

between breaking and nonbreaking waves was given

by Synolakis (1986) as

�
H

h

�
break

¼ 0:8183 cotað Þ�10=9 ð42Þ

Because of the difference in run-up behavior between

breaking and nonbreaking solitary waves, each case is

considered separately.

3.4.1. Breaking solitary wave run-up

Measured values of maximum solitary wave run-

up for slopes with cota=11.43, 15.0 and 30.0 were

obtained from Hall and Watts (1953), Li (2000) and

Briggs et al. (1995), respectively. Corresponding

values of the wave momentum flux parameter for

solitary waves were calculated for all the data. For

each structure slope an empirical coefficient was

determined that provided a best fit of Eq. (37). The
Fig. 11. Measured versus predicted breaking solitary wave run-up—

Eq. (43).
coefficients were then expressed as a function of slope

resulting in the following simple equation for break-

ing solitary wave run-up.

R

h
¼ 1:39� 0:027cotað Þ

�
MF

qgh2

�1=2

ð43Þ

Fig. 11 plots the 112 measured run-up values

versus run-up predicted by Eq. (43). The solid line is

the line of equivalence and the overall root-mean-

squared error was 0.051. There is reasonable corre-

spondence between estimates and observations, but

that was expected because the same data were used to

establish the predictive equation. More importantly,

there is a bias to the comparison because the simple

derivation resulted in the wave momentum flux

parameter being raised to the 1/2-power. The data

actually showed that a better fit could be obtained if

the exponent varied from 1/2 for very mild slopes up

to a value of unity near the transition between

breaking and nonbreaking waves. This implies that

the sea surface of the run-up wedge changes from a

nearly straight line to a concave shape as the structure

slope increases which agrees with run-up profiles

measured by Li and Raichlen (2001). Thus, the simple
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triangular wedge derivation presented earlier is not

appropriate for steeper slopes and a more accurate

description of the wedge volume is needed. Never-

theless, Eq. (43) yielded reasonable estimates for

slopes between 1/30 and 1/10.

3.4.2. Nonbreaking Solitary Wave Run-up

Nonbreaking wave run-up data from Synolakis

(1986, 1987) for a plane impermeable slope with

cota=2.08, and data from Hall and Watts (1953) for

slopes with cot a=1.0, 2.14 and 3.73 were used to

examine the utility of the wave momentum flux

parameter for estimating nonbreaking solitary wave

run-up. In this case, relative wave run-up R/h was

shown to be directly proportional to the maximum

depth-integrated wave momentum flux parameter with

a very good fit to the 122 data points provided by the

expression

R

h
¼ 1:82 cotað Þ1=5

�
MF

qgh2

�
ð44Þ

Goodness-of-fit is shown in Fig. 12 for the nonbreaking

wave run-up data. With the exception of a few outlying

points, the empirical Eq. (44) does remarkably well.

Overall root-mean-squared error between measured
Fig. 13. Measured versus predicted nonbreaking solitary wave run-

up—Li formula.
and predicted R/h was 0.12 for all data, and the RMS

error dropped to 0.034 when the three out-lying points

were discarded. Also note that structure slope has a

relatively minor influence for nonbreaking solitary

waves.

A theoretical run-up equation for nonbreaking

solitary waves was presented by Li and Raichlen

(2001) as

�
R

h

�
Li

¼ 2:831 cotað Þ1=2
�
H

h

�5=4

þ 0:293 cotað Þ3=2
�
H

h

�9=4

ð45Þ

Predictions using Eq. (45) are compared to the

nonbreaking run-up data in Fig. 13. Good corre-

spondence is seen except for the milder slope

with cota=3.73. It is interesting to note that

substitution of Eq. (31) for MF/(qgh
2) in Eq. (44)

results in an expression containing terms with H/h

raised to powers that are approximately the same as in

Eq. (45).
4. Summary and conclusions

The goal of this study was to develop new

formulas for wave run-up on smooth, impermeable

plane slopes based on a new parameter representing

the maximum depth-integrated wave momentum flux

occurring in a wave. These formulas should be as

good as existing formulas for estimating run-up due to

waves that break on the slope and better at estimating

nonbreaking wave run-up.

A crude run-up formula was derived based on the

simple argument that the weight of water contained in

the run-up wedge above still water level at maximum

run-up is proportional to the maximum depth-inte-

grated wave momentum flux in the wave at or near the

toe of the slope. The derived general formula included

an unknown function of slope that needed to be

determined empirically.

Existing published wave run-up data for regular,

irregular and solitary waves were used to establish

the empirical slope functions for the new wave run-

up formulas. Reasonable predictive capability for

regular waves was demonstrated for all but the
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steepest 1:1 slope. Existing regular wave run-up

formulas based on Iribarren number did better than

the new formula for mild slopes but poorer on

steeper slopes.

Irregular wave data from Ahrens (1981) and

Mase (1989) were used to establish the empirical

slope functions for breaking and nonbreaking wave

run-up corresponding to the 2% run-up elevation.

The wave momentum flux parameter was defined in

terms of the frequency-domain wave parameters

Hmo and Tp. For waves that break as plunging or

spilling breakers on the slope, a single equation

was found covering the slopes in the range 1/30

VtanaV2/3. In this formula, the influence of

structure or beach slope on wave run-up decreases

with slope in agreement with observations made by

Douglass (1992). The formula for nonbreaking

surging waves on steep slopes was limited to the

range 1/4VtanaV1/1. Comparison of predictions to

measurements for both breaking and nonbreaking

irregular wave run-up were good with the exception

of short-period waves breaking on the 1:1 slope. It

was hypothesized that the sea surface profile of the

run-up wedge was no longer a straight line in this

instance, so the crude run-up formula was no

longer valid. Estimation of irregular run-up on

structure slopes using the formulas given in the

Coastal Engineering Manual produced generally

poorer comparisons to the measurements of Ahrens

(1981).

Maximum run-up of breaking and nonbreaking

solitary waves on smooth, impermeable plane slopes

was adequately predicted using the wave momentum

flux parameter for solitary waves. This illustrates the

utility of the wave momentum flux parameter for

nonperiodic waves.

The premise that wave run-up can be estimated

as a function of the wave momentum flux parameter

appears valid based on the data used to develop the

empirical formulas in this paper. As noted by

Ahrens et al. (1993), there are few irregular wave

run-up laboratory data for severe shallow water

conditions of near depth-limited breaking (0.33V
Hmo/hV0.60) relative to water depth at the structure

toe. So we are not really certain how the

laboratory-based wave run-up formulas perform for

what may be the design run-up condition. The wave

momentum flux parameter includes the effect of
increasing wave nonlinearity, and thus, it is

anticipated that the new run-up formulas for

irregular waves might give better estimates for very

nonlinear waves arriving at the toe of the slope.

Likewise, there is hope that the wave momentum

flux parameter will prove equally useful for

estimating wave run-up on rough and permeable

structure slopes. However, both of these hypotheses

remain unproven at this time.

Notation

a1, a2, a3 empirical coefficients

A0 empirical coefficient

A1 empirical exponent

b1, b2 empirical coefficients

co empirical coefficient

C empirical coefficient

Cm empirical run-up coefficient

Cp empirical run-up coefficient

C1, C2, C3 empirical coefficients

F(a) empirical function of structure or beach slope

e base of natural logarithm

g gravitational acceleration

h water depth from bottom to the still water

level

H uniform steady wave height

Hlimit steepness limit wave height

Hmo zeroth-moment wave height related to the area

beneath the spectrum

Ho deepwater uniform wave height

Hs significant wave height for irregular wave

train

H1/3 average of the highest 1/3 waves in an irregular

wave train

k wave number [=2p/L]
KM unknown constant of proportionality

KP reduction factor to account for slope porosity

(KP=1 for impermeable slopes)

L local wavelength

Lo deepwater wavelength

Lom deepwater wavelength associated with mean

irregular wave period Tm

Lop deepwater wavelength associated with peak

spectral period Tp

Lp wavelength associated with peak spectral

period Tp

M coefficient for solitary wave theory (function of

H/h)
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MF depth-integrated wave momentum flux across a

unit width

(MF)max maximum depth-integrated wave momen-

tum flux across a unit width

N coefficient for solitary wave theory (function of

H/h)

P exceedence probability

Pd instantaneous wave dynamic pressure at a

specified position

r dimensionless water depth [=x2h/g]

R maximum vertical run-up from SWL

R̄ mean wave run-up elevation

Rmax maximum wave run-up elevation

RP wave run-up elevation associated with exceed-

ence probability, P

Rs significant wave run-up elevation

RX wave run-up elevation associated with different

elevations

Ru2% wave run-up elevation exceeded by highest 2%

of run-ups

R1/3 average of the highest 1/3 wave run-up

elevations

R1/10 average of the highest 1/10 wave run-up

elevations

Sxx wave-averaged momentum flux (also known as

radiation stress)

t time

T wave period

Tp wave period associated with the spectrum peak

frequency

Tm mean wave period in irregular wave train

u instantaneous horizontal water velocity at a

specified position

W(ABC) weight of water per unit crest width in area

ABC

x horizontal coordinate positive in the direction

of wave propagation

Xp depth function in run-up formula

z vertical coordinate directed positive upward

with origin at the SWL

Greek symbols

a beach or structure slope

g instantaneous sea surface elevation relative to

still water level

h unknown angle between still water level and

run-up water surface

no deepwater Iribarren number
nom deepwater Iribarren number based on Tm and

local H1/3

nop deepwater Iribarren number based on Tp and

local Hmo

nVop deepwater Iribarren number based on Tp and

local H1/3

p mathematical PI

j wave function in run-up formula

q mass density of water

x circular wave frequency [=2p/T]
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